Lefschetz theorem for valuations , complex integral geometry , and unitarily invariant valuations

نویسنده

  • Semyon Alesker
چکیده

We obtain new general results on the structure of the space of translation invariant continuous valuations on convex sets (a version of the hard Lefschetz theorem). Using these and our previous results we obtain explicit characterization of unitarily invariant translation invariant continuous valuations. It implies new integral geometric formulas for real submanifolds in Hermitian spaces generalizing the classical kinematic formulas in Euclidean spaces due to Poincaré, Chern, Santaló, and others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Se p 20 02 Hard Lefschetz theorem for valuations , complex integral geometry , and unitarily invariant

We obtain new general results on the structure of the space of translation invariant continuous valuations on convex sets (a version of the hard Lefschetz theorem). Using these and our previous results we obtain explicit characterization of unitarily invariant translation invariant continuous valuations. It implies new integral geometric formulas for real submanifolds in Hermitian spaces genera...

متن کامل

Lefschetz theorem for valuations and related questions of integral geometry

We continue studying the properties of the multiplicative structure on valuations. We prove a new version of the hard Lefschetz theorem for even translation invariant continuous valuations, and discuss problems of integral geometry staying behind these properties. Then we formulate a conjectural analogue of this result for odd valuations.

متن کامل

Algebraic Structures on Valuations, Their Properties and Applications

We describe various structures of algebraic nature on the space of continuous valuations on convex sets, their properties (like versions of Poincaré duality and hard Lefschetz theorem), and their relations and applications to integral geometry. 2000 Mathematics Subject Classification: 46, 47.

متن کامل

MATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...

متن کامل

Isometry-Invariant Valuations on Hyperbolic Space

Hyperbolic area is characterized as the unique continuous isometry invariant simple valuation on convex polygons in H. We then show that continuous isometry invariant simple valuations on polytopes in H for n ≥ 1 are determined uniquely by their values at ideal simplices. The proofs exploit a connection between valuation theory in hyperbolic space and an analogous theory on the Euclidean sphere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002